

CISCO

GENERATIVE DATASET DISTILLATION

- Dataset distillation synthesize a small dataset such that training a model on it achieves similar performance to training on the full dataset.
- Optimization-based methods were the first to emerge but are slow and hard to scale to large datasets and high resolutions.
- Generative dataset distillation compresses the full dataset into a generative model that samples the distilled data.
- The challenge is to generate a small, diverse, and representative dataset that closely approximates the full dataset with only a few samples.

CONTRIBUTIONS

- We propose a training-free method that to synthesize distilled datasets.
- Our approach achieves diverse and representative distilled datasets.
- Achieves state-of-the-art performance across multiple benchmarks.
- Works with text-to-image models, even when not trained on target dataset.

MGD³: <u>Mode-Guided Dataset Distillation using Diffusion Models</u> Jeffrey A. Chan-Santiago¹, Praveen Tirupattur¹, Gaurav Kumar Nayak², Gaowen Liu³, Mubarak Shah¹

¹ Center for Research in Computer Vision, University of Central Florida ²Mehta Family School of DS & AI, Indian Institute of Technology Roorkee, India ³Cisco Research

	ImageNette		ImageIDC			
Image per Class	10	20	50	10	20	50
Random DM (Zhao & Bilen, 2023) MinMaxDiff (Gu et al., 2024)	$\begin{array}{c} 54.2_{\pm 1.6} \\ 60.8_{\pm 0.6} \\ 62.0_{\pm 0.2} \end{array}$	$\begin{array}{c} 63.5_{\pm 0.5} \\ 66.5_{\pm 1.1} \\ 66.8_{\pm 0.4} \end{array}$	$\begin{array}{c} 76.1_{\pm 1.1} \\ 76.2_{\pm 0.4} \\ 76.6_{\pm 0.2} \end{array}$	$\begin{array}{ c c c c c } 48.1_{\pm 0.8} \\ 52.8_{\pm 0.5} \\ 53.1_{\pm 0.2} \end{array}$	$\begin{array}{c} 52.5_{\pm 0.9} \\ 58.5_{\pm 0.4} \\ 59.0_{\pm 0.4} \end{array}$	$\begin{array}{c} 68.1 _{\pm 0.7} \\ 69.1 _{\pm 0.8} \\ 69.6 _{\pm 0.2} \end{array}$
LDM (Rombach et al., 2022) LDM + Disentangled Diffusion (D ⁴ M (Su et al., 2024)) LDM + MGD ³ (Ours)	$\begin{array}{c} 60.3_{\pm 3.6} \\ 59.1_{\pm 0.7} \\ 61.9_{\pm 4.1} \end{array}$	$\begin{array}{c} 62.0_{\pm 2.6} \\ 64.3_{\pm 0.5} \\ 65.3_{\pm 1.3} \end{array}$	$71.0_{\pm 1.4} \\ 70.2_{\pm 1.0} \\ 74.2_{\pm 0.9}$	$\begin{array}{c c} 50.8_{\pm 1.2} \\ 52.3_{\pm 2.3} \\ \hline 53.2_{\pm 0.2} \end{array}$	$55.1_{\pm 2.0} \\ 55.5_{\pm 1.2} \\ 58.3_{\pm 1.7}$	$\begin{array}{c} 63.8_{\pm 0.4} \\ 62.7_{\pm 0.8} \\ 67.2_{\pm 1.3} \end{array}$
DiT (Peebles & Xie, 2023) DiT + Disentangled Diffusion (D ⁴ M (Su et al., 2024)) DiT + MGD ³ (Ours)	$\begin{array}{c} 59.1_{\pm 0.7} \\ 60.4_{\pm 3.4} \\ \textbf{66.4}_{\pm 2.4} \end{array}$	$\begin{array}{c} 64.8_{\pm 1.2} \\ 65.5_{\pm 1.2} \\ \textbf{71.2}_{\pm 0.5} \end{array}$	$\begin{array}{c} 73.3_{\pm 0.9} \\ 73.8_{\pm 1.7} \\ \textbf{79.5}_{\pm 1.3} \end{array}$	54.1 ± 0.4 51.1 ± 2.4 55.9 ± 2.1	$58.9_{\pm 0.2} \\ 58.0_{\pm 1.4} \\ \textbf{61.9}_{\pm 0.9}$	$\begin{array}{c} 64.3_{\pm 0.6} \\ 64.1_{\pm 2.5} \\ \textbf{72.1}_{\pm 0.8} \end{array}$

ndom	$59.6_{\pm 1.8}$	LDM	60.3 ± 3.6	$60.4_{\pm 3,1}$	
BSCAN	$61.3_{\pm 1.9}$	LDM + Ours	61.9 ± 4.1	$673_{\pm 1.1}$	
ectral Clustering	$64.5_{\pm 2.1}$		01.7±4.1		
Vieans (centroid)	$60.4_{\pm 2.4}$	DiT	$58.8_{\pm 2.1}$	$61.4_{\pm 2.4}$	
vieans (closest sample)	04.0 ± 0.4	DiT I Ourc	66 / 1	66 6	
	66 0		UU.4 +2.4	$UU_{U}+()_{6}$	

Qualitative Results

Wider t-SNE spread shows our method generates a more diverse dataset.

Our method yields greater diversity in backgrounds poses, and viewpoints.